NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells.

نویسندگان

  • Oren Hershkovitz
  • Benyamin Rosental
  • Lior Ann Rosenberg
  • Martha Erika Navarro-Sanchez
  • Sergey Jivov
  • Alon Zilka
  • Orly Gershoni-Yahalom
  • Elodie Brient-Litzler
  • Hugues Bedouelle
  • Joanna W Ho
  • Kerry S Campbell
  • Bracha Rager-Zisman
  • Philippe Despres
  • Angel Porgador
چکیده

Dengue virus (DV) and West Nile virus (WNV) have become a global concern due to their widespread distribution and their ability to cause a variety of human diseases. Antiviral immune defenses involve NK cells. In the present study, we investigated the interaction between NK cells and these two flaviviruses. We show that the NK-activating receptor NKp44 is involved in virally mediated NK activation through direct interaction with the flavivirus envelope protein. Recombinant NKp44 directly binds to purified DV and WNV envelope proteins and specifically to domain III of WNV envelope protein; it also binds to WNV virus-like particles. These WNV-virus-like particles and WNV-domain III of WNV envelope protein directly bind NK cells expressing high levels of NKp44. Functionally, interaction of NK cells with infective and inactivated WNV results in NKp44-mediated NK degranulation. Finally, WNV infection of cells results in increased binding of rNKp44 that is specifically inhibited by anti-WNV serum. WNV-infected target cells induce IFN-gamma secretion and augmented lysis by NKp44-expressing primary NK cells that are blocked by anti-NKp44 Abs. Our findings show that triggering of NK cells by flavivirus is mediated by interaction of NKp44 with the flavivirus envelope protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zika Research Shifts into High Gear

The number of scientific articles mentioning Zika virus has nearly doubled in the past two months, a testament to both the intensity of ongoing efforts to expose its secrets and how far under the radar Zika had been prior to the current epidemic. With the biomedical research enterprise now in full swing, what are the latest advances and what new avenues are these findings opening up? First off,...

متن کامل

Antiviral peptides targeting the west nile virus envelope protein.

West Nile virus (WNV) can cause fatal murine and human encephalitis. The viral envelope protein interacts with host cells. A murine brain cDNA phage display library was therefore probed with WNV envelope protein, resulting in the identification of several adherent peptides. Of these, peptide 1 prevented WNV infection in vitro with a 50% inhibition concentration of 67 muM and also inhibited infe...

متن کامل

Flavivirus Cell Entry and Membrane Fusion

Flaviviruses, such as dengue virus and West Nile virus, are enveloped viruses that infect cells through receptor-mediated endocytosis and fusion from within acidic endosomes. The cell entry process of flaviviruses is mediated by the viral E glycoprotein. This short review will address recent advances in the understanding of flavivirus cell entry with specific emphasis on the recent study of Zai...

متن کامل

Stable expression and potential use of west nile virus envelope glycoproteins preM/E as antigen in diagnostic tests

West Nile virus (WNV) envelope glycoproteins preM/E were stably expressed in baby hamster kidney cells and tested as antigen in a fluorescent antibody assay for WNV antibodies. Sera from horses, mice and chicken immunized with an inactivated WNV vaccine and, less consistently, sera from horses acutely infected with WNV, reacted specifically with viral antigens present in preM/E-expressing cells.

متن کامل

West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection.

The C-type lectins DC-SIGN and DC-SIGNR bind mannose-rich glycans with high affinity. In vitro, cells expressing these attachment factors efficiently capture, and are infected by, a diverse array of appropriately glycosylated pathogens, including dengue virus. In this study, we investigated whether these lectins could enhance cellular infection by West Nile virus (WNV), a mosquito-borne flavivi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 183 4  شماره 

صفحات  -

تاریخ انتشار 2009